

8-bit Single Chip Microcomputer

- Evaluation Chip with Flash Built-in
- Compatible with E0C88861/862/832/348/317/316/308
- On-board Writing Supported

■ DESCRIPTION

The E0C88F360 is a CMOS 8-bit microcomputer composed of the core CPU E0C88 (MODEL3), rewritable ROM (Flash), RAM, dot-matrix type LCD driver, three types of timers and asynchronous/clock synchronous selectable serial interface. The E0C88F360 has a built-in large-capacity Flash ROM ($60K \times 8$ bits) and a RAM ($2K \times 8$ bits), and is upper compatible with the E0C88861, E0C88862, E0C88832, E0C88348, E0C88317, E0C88316 and E0C88308. The E0C88F360 can be used as a MTP (Multi-Time Programming) when developing programs.

■ FEATURES

● Core CPU	E0C88 (MODEL3) CMOS 8-bit core CPU
OSC1 oscillation circuit	32.768kHz (Typ.) crystal oscillation circuit
OSC3 oscillation circuit	8.2MHz (Max.) crystal/ceramic oscillation circuit
Instruction set	608 types (usable for multiplication and division instructions)
Instruction execution time	0.244 µsec/8.2MHz (for 2-clock instructions)
● PROM (Flash EEPROM)	\dots 61,440 $ imes$ 8 bits Supports serial- and parallel-programming method using the exclusive ROM writer
● RAM	•
	3,216-bit display memory
Bus line	Address bus: 19 bits (shared with output ports)
	Data bus : 8 bits (shared with I/O ports)
	CE signal : 4 bits (shared with output ports) WR signal : 1 bit (shared with output port)
	RD signal : 1 bit (shared with output port)
● Input port	10 bits (usable for EVIN and BREQ signal inputs)
	9 bits (usable for buzzer, LCD control, FOUT, TOUT and BACK signal outputs)
● I/O port	8 bits (usable for serial I/O and analog comparator inputs)
Serial interface	1 ch. (8-bit clock synchronous or asynchronous system)
• Timer	Programmable timer (8 bits): 2 ch. (usable as a 1-ch. 16-bit timer) Clock timer (8 bits) : 1 ch. Stopwatch timer (8 bits) : 1 ch.
LCD driver	Dot-matrix type (supports 5×8 or 5×5 dot font) 51 segments \times 32 commons, 67 segments \times 16 or 8 commons LCD power supply circuit built-in (boostor type, 5 potentials)
Sound generator	Envelope and volume control functions built-in
Watchdog timer	Built-in
Analog comparator	2 ch.
A/D converter	4 ch., 10-bit resolution, maximum error = ±3LSB (not available if analog comparator is used)

● Supply voltage detection (SVD) circuit... 16-level detection

● Internal interrupt : 3 systems (9 types)

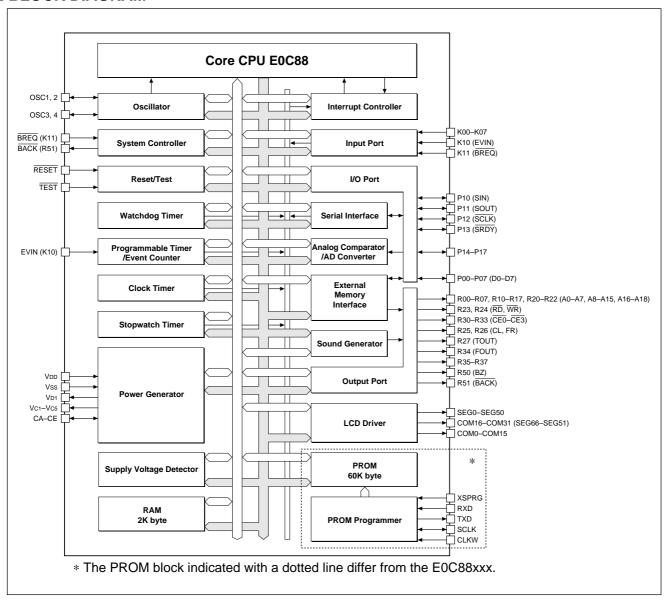
Serial interface interrupt: 1 system (3 types) A/D converter interrupt: 1 system (1 type)

● Power supply voltageNormal mode : 2.4V to 5.5V (Max. 4.2MHz) VD1 = 2.2V

Low-power mode : 1.8V* to 3.5V (Max. 50kHz) VD1 = 1.6V

High-speed mode : 3.5V to 5.5V (Max. 8.2MHz*) VD1 = 3.3V

● Current consumption E0C88F360 * E0C88862 (measured value)

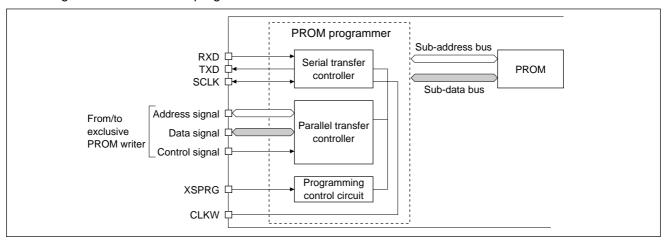

HALT mode : $\overline{3}\mu A$ (Typ., normal mode) $\overline{2}\mu A$ (Typ., normal mode) Run (32kHz): 18μA (Typ., normal mode) 10μA (Typ., normal mode)

Run (4MHz): 2mA (Typ., normal mode) 1.5mA (Typ., normal mode)

● PackageQFP18-176pin (plastic) or chip

* Design objective

■ BLOCK DIAGRAM



■ PROM PROGRAMMER AND OPERATING MODES

The biggest difference between the E0C88F360 and the E0C88xxx is that the E0C88F360 contains Flash EEPROM as the ROM that allows the user to write data to it using the exclusive ROM writer (UNIVERSAL ROM WRITER II). The E0C88F360 also has a built-in PROM programmer that controls writing data to the PROM. The following explains the PROM programmer and the operating modes that are added for the programming operation.

Configuration of PROM Programmer

The configuration of the PROM programmer is shown below.

The PROM programmer supports Serial Programming for writing data received in serial transfer and Parallel Programming that uses a parallel transfer. The programming method will be described later.

Terminals

The PROM programmer uses the following input/output terminals. The following sections will explain handling the terminals in each operating mode.

XSPRG: PROM serial programming mode setting terminal

RXD: Serial data receive terminal

TXD: Serial data transmit terminal

SCLK: Serial clock input/output terminal

CLKW: Serial programming source clock (3.072 MHz) input terminal

The parallel programming mode uses other terminals in addition to the terminals above. However, it is not necessary to switch the lines on the board, because the IC is programed by directly installing it to the exclusive PROM writer (UNIVERSAL ROM WRITER II).

Operating Modes

Three operating modes are available in the E0C88F360: one is for normal operation and the others are for programming.

- 1) Normal operation mode (Normal mode/High-speed mode)
- 2) PROM serial programming mode
- 3) PROM parallel programming mode

The operating mode is decided by the XSPRG terminal setting at power on or initial reset.

Normal operation mode

In this mode, the E0C88 core CPU and the peripheral circuits operate by the programmed PROM. The CPU can enter this mode after the PROM programming has finished.

The PROM bit data is set to "1" at shipment. Therefore, the IC will not work even if the normal operation mode is set before programming.

EPSON

3

In the normal operation mode, set the terminals for the PROM programmer as below. The board must be designed so that the terminal settings cannot be changed.

XSPRG: Fix at a High level.

RXD, SCLK, CLKW: Open or fix at a High level.

TXD: Open.

PROM serial programming mode

The PROM serial programming mode should be set when writing data to the PROM using a serial transfer from the exclusive PROM writer (UNIVERSAL ROM WRITER II). This mode will be used for the programming of chip products, because the programming can be done even when the IC has already been mounted on the board. To create data to be written to the PROM, use the E0C88 assembler similar to the E0C88xxx.

The following explains the procedure of PROM serial programming.

<PROM serial programming procedure>

(1) Set the required terminals for serial programming as follows:

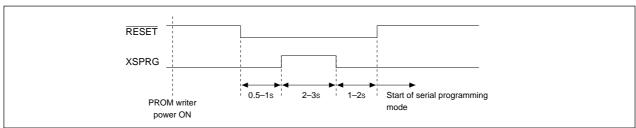
XSPRG: Set the terminal so that it will be fixed to a Low level. (A switch should be provided on the target board to change the XSPRG terminal level between High and Low.)

Note: The XSPRG terminal must be fixed at a Low level in the programming mode and at a High level in the normal operation mode. Changing the voltage level may damage the IC.

RXD, TXD, SCLK: Connect to the PROM writer.

CLKW: Connect to the PROM writer. A 3.072 MHz clock will be supplied from the PROM writer at programming.

Other terminals should be set as below.


Input port (K) and I/O port (P) terminals: Fix at a High or Low level.

TEST terminal: Fix at a High level.

(2) Turn the IC (user target board) power (+5 V) on.

A power voltage must be supplied to the VDD and Vss terminals same as the regular operation so that the OSC1 oscillation circuits operate normally.

- (3) Turn the PROM writer on.
- (4) Controls the RESET and XSPRG terminals as shown below.

(5) Start up us88f360.exe or jp88f360.exe in the personal computer, then load the 88f360.frm file. This allows serial programming to begin.

After setting this mode, data can be written to the exclusive PROM writer (UNIVERSAL ROM WRITER II). Refer to the "E0C88Pxxx Universal ROM Writer II User's Manual" for the connection and operation of the PROM writer.

PROM parallel programming mode

In the PROM parallel programming mode, the exclusive PROM writer (UNIVERSAL ROM WRITER II) transfers data in parallel to the IC installed on the PROM writer to write data to it. The terminal setting is done by the PROM writer. Thus there is no precaution on mode setting or board design.

Refer to the "E0C88Pxxx Universal ROM Writer II User's Manual" for the operation of the PROM writer.

To create data to be written to the PROM, use the E0C88 assembler the same as the E0C88xxx.

■ DIFFERENCES FROM THE MASK ROM MODELS

Mask Option

The mask option items are fixed in the E0C88F360 as shown in the table below.

Mask option		Set 1	Set 2		
OSC1 oscillation circuit		Crystal oscillation (32.768 kHz)	Crystal oscillation (32.768 kHz)		
OSC3 oscillation circuit		CR oscillation	Crystal/ceramic oscillation		
Multiple key entry reset coml	oination	Not use	Not use		
SVD reset		Not use	Not use		
Input port pull up resistor	K00	With resistor	With resistor		
	K01	With resistor	With resistor		
	K02	With resistor	With resistor		
	K03	With resistor	With resistor		
	K04	With resistor	With resistor		
	K05	With resistor	With resistor		
	K06	With resistor	With resistor		
	K07	With resistor	With resistor		
	K10	With resistor	With resistor		
	K11	With resistor	With resistor		
	RESET	With resistor	With resistor		
I/O port pull up resistor	P00	With resistor	With resistor		
a periopan aprocessor	P01	With resistor	With resistor		
	P02	With resistor	With resistor		
	P03	With resistor	With resistor		
	P04	With resistor	With resistor		
	P05	With resistor	With resistor		
	P06	With resistor	With resistor		
	P07	With resistor	With resistor		
	P10	With resistor	With resistor		
	P11	With resistor	With resistor		
	P12	With resistor	With resistor		
	P13	With resistor	With resistor		
	P14	No resistor	No resistor		
	P15	No resistor	No resistor		
	P16	No resistor	No resistor		
	P17	No resistor	No resistor		
Output port specification	R00	Complementary	Complementary		
	R01	Complementary	Complementary		
	R02	Complementary	Complementary		
	R03	Complementary	Complementary		
	R04	Complementary	Complementary		
	R05	Complementary	Complementary		
	R06	Complementary	Complementary		
	R07	Complementary	Complementary		
	R10	Complementary	Complementary		
	R11	Complementary	Complementary		
	R12	Complementary	Complementary		
	R13	Complementary	Complementary		
	R14	Complementary	Complementary		
	R15	Complementary	Complementary		
	R16	Complementary	Complementary		
	R17	Complementary	Complementary		
LCD drive duty	1	1/32 & 1/16 duty	1/32 & 1/16 duty		
LCD power supply		Internal power supply (4.5 V)	Internal power supply (5.5 V)		

Power Supply

Operating voltage range

Model	Normal mode	High-speed mode	Low-power mode
Model	(VD1 = 2.2V)	(VD1 = 3.3V)	(VD1 = 1.6V)
E0C88F360	2.4 to 5.5V	3.5 to 5.5V	*1.8 to 3.5V
E0C88316	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88317	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88348	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88308	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88860	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88861	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88862	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V
E0C88832	2.4 to 5.5V	3.5 to 5.5V	1.8 to 3.5V

^{*} The minimum operating voltage (1.8V) in Low-power mode is subject to change without notice.

The E0C88F360 operation is guaranteed within the above voltage range.

LCD drive voltage (Vc1-Vc5)

LCD drive veltage	Condition	E0C883	xx/888xx	E0C88F360		
LCD drive voltage	Condition	Min.	Max.	Min.	Max.	
Vc1	*1	0.18Vc5	0.22Vc5	0.18Vc5	0.22Vc5	
VC2	*2	0.39Vc5	0.43Vc5	0.39Vc5	0.43Vc5	
Vc3	*3	0.59Vc5	0.63Vc5	0.59Vc5	0.63Vc5	
VC4	*4	0.80Vc5	0.84Vc5	0.80Vc5	0.84Vc5	
VC5 TYPE A (4.5 V)	*5 LCX = 0H LCX = 1H LCX = 2H LCX = 3H LCX = 4H LCX = 5H LCX = 6H LCX = 7H LCX = 8H LCX = 9H LCX = AH LCX = BH LCX = CH LCX = DH LCX = EH LCX = FH	Typ. × 0.94	Typ. × 1.06	Typ. × 0.94	Typ. × 1.06	
VC5 TYPE B (5.5 V)	*5	Typ. × 0.94	Typ. × 1.06	Typ. × 0.94	Typ. × 1.06	

^{*1:} when a 1 $\mbox{M}\Omega$ load resistor is connected between Vss and Vc1

(Unit: V)

^{*2:} when a 1 $M\Omega$ load resistor is connected between Vss and Vc2

^{*3:} when a 1 $M\Omega$ load resistor is connected between Vss and Vc3

^{*4:} when a 1 $M\Omega$ load resistor is connected between Vss and Vc4

^{*5:} when a 1 $M\Omega$ load resistor is connected between Vss and Vcs

Initial Reset

E0C88F360 uses the initial reset signal as a trigger for setting either the normal operation mode or the programming mode. Therefore, design the reset input circuit so that the IC will be reset for sure. When resetting the IC in the normal operation mode, make sure to fix the XSPRG terminal at High level.

ROM

The E0C88F360 employs a Flash EEPROM for the internal ROM. The ROM has a capacity of $61,440 \times 8$ bits and is allocated to 000000H-00EFFFH. The Flash EEPROM can be rewritten up to 1,000 times. Rewriting data is done at the user's own risk.

RAM

The built-in RAM has a capacity of 2,048 words × 8 bits and is allocated to 00F000H–00F7FFH.

Oscillation Circuit

In the E0C88F360, only crystal oscillator is available for the OSC1 oscillation circuit and either CR or crystal/ceramic oscillator is available for the OSC3 oscillation circuit. Furthermore, pay attention to the difference on the oscillation start time according to the supply voltage. Be sure to have enough margin especially for stabilizing the OSC3 oscillation when controlling the peripheral circuit that uses the OSC3 clock.

SVD Circuit

The E0C88F360 has a built-in SVD circuit.

Detection level		E0C883xx/888xx	(E0C883F360			
Detection level	Min.	Тур.	Max.	Min.	Тур.	Max.	
Level 1 → Level 0		1.82			1.82		
Level 2 → Level 1		2.00			2.00		
Level 3 → Level 2	Typ. × 0.92	2.18			2.18		
Level 4 → Level 3		2.36			2.36		
Level 5 → Level 4		2.54	Typ. × 1.08	Typ. × 0.92	2.54	Typ. × 1.08	
Level 6 → Level 5		2.72			2.72		
Level 7 → Level 6		2.90			2.90		
Level 8 → Level 7		3.08			3.08		
Level 9 → Level 8		3.26			3.26		
Level 10 → Level 9		3.45			3.45		
Level 11 → Level 10		3.65			3.65		
Level 12 → Level 11	Typ. × 0.88	3.85	Tup v 1 12	Typ. × 0.88	3.85	Tup v 1 12	
Level 13 → Level 12	1 yp. × 0.00	4.05	Typ. × 1.12	1 yp. × 0.00	4.05	Typ. × 1.12	
Level 14 → Level 13		4.25			4.25		
Level 15 → Level 14		4.50			4.50		

(Unit: V)

The mask option for reseting when low voltage is detected (available in the E0C88xxx) is not provided in the E0C88F360.

● List of Different Specifications between E0C88F360 and E0C88xxx

			E0C88348	E0C88316/317	E0C88308	E0C88862	E0C88861	E0C88832	E0C88F360	E0C88P348
Package	QFP18-176pin		×	×	×	×	×	×	0	0
	QFP8-160pin		0	0	0	×	×	×	×	0
	QFP8-128pin		×	×	×	0	0	0	×	×
	QFP15-128pin		×	×	×	0	0	0	×	×
Number of ac	dditional pin for Fl	ash	-	_	_	_	_	-	5 pins	5 pins
ROM size			48KB	16KB	8KB	60KB	60KB	32KB	60KB	48KB
RAM size			2KB	2KB	256B	1.5KB	1.5KB	1.5KB	2KB	2KB
Input port			10	←	9	←	←	←	10	10
Output port			9	←	5	2	2	2	9	9
I/O port			8	· ←	←	←	←	←	8	8
Chip mode	Single chip		0	0	0	0	0	0	0	0
Omp mode	Extended 64K	MCU	×	0	0	0	0	0	×	×
	LXterided 04K	MPU	Ô	0	0	0	0	0	Ô	
	Foton do d									×
	Extended	MCU	0	0	0	0	0	0	0	0
	512K min.	MPU	0	0	0	0	0	0	0	×
	Extended	MCU	0	0	0	0	0	0	0	0
	512K max.	MPU	0	0	0	0	0	0	0	×
Operating	Normal	(VD1 = 2.2V)	0	0	0	0	0	0	0	0
mode	High-speed	(VD1 = 3.3V)	0	0	0	0	0	0	0	0
	Low-power	(VD1 = 1.3V)	0	0	0	0	0	0	0	×
Mask ROM	OSC1	Crystal	0	0	0	0	0	0	0	0
option select		External	0	0	0	0	0	0	×	×
,		CR	0	0	0	0	0	0	×	×
		Crystal (with Cg)	0	0	0	0	0	0	×	×
	OSC3	Crystal	0	0	0	0	0	0	Ô	- ô
	0303		-							
		Ceramic	0	0	0	0	0	0	0	0
		CR	0	0	0	0	0	0	0	×
		External	0	0	0	0	0	0	×	×
	I/O (P) port	With resistor	0	0	0	0	0	0	0	0
	pull-up	Gate direct	0	0	0	0	0	0	×	×
	Input (K) port	With resistor	0	0	0	0	0	0	0	0
	pull-up	Gate direct	0	0	0	0	0	0	×	×
	Output (R) port	Complementary	0	0	0	0	0	0	0	0
	output spec.	Nch open drain	0	0	0	0	0	0	×	×
	LCD duty	1/32 & 1/16	0	0	0	0	0	0	0	0
		1/8	0	0	0	ō	0	0	×	×
	LCD power	TYPE A (4.5V)	0	0	0	ō	0	0	Ô	×
	LOD power	TYPE B (5.5V)	0	0	0	0	0	0	0	Ô
		_ , ,	0	0	0	0	0			
	Deset	External power source	 					0	×	×
	Reset	K0 port combination	0	0	0	0	0	0	×	×
		SVD reset	0	0	0	0	0	0	×	×
Operating vol	ltage	Normal	2.4 ~ 5.5V	←	←	←	←	←	←	3.3 ~ 5.5V
		High-speed	3.5 ~ 5.5V	←	←	←	←	←	←	4.5 ~ 5.5V
		Low-power	1.8 ~ 3.5V	←	←	←	←	←	← *1	×
Operating	OSC1	Normal	30k ~ 50kHz	←	←	←	←	←	←	←
frequency		High-speed	30k ~ 50kHz	←	←	←	←	←	←	←
		Low-power	30k ~ 50kHz	←	←	←	←	←	←	×
	OSC3	Normal	30k ~ 4.1MHz	←	←	←	←	←	←	←
		High-speed	30k ~ 8.2MHz	←	←	←	←	←	←	30k ~ 6MHz
Operating ter	mperature	,	-40 ~ 85°C	←	←	←		←	-20 ~ 70°C	0 ~ 70°C
Power	Normal (5.5V, 3	2kHz)	18μΑ	· ←	· ←	TBD	TBD	TBD	25μΑ	12mA
current	High-speed (5.5		1.0mA	←	←	TBD	TBD	TBD	2.0mA	15mA
(max.)	_ , ,	iV, normal mode)	1μΑ	←	←	TBD	TBD	TBD	1μΑ	1μΑ
Power	CPU	,	VD1						· ·	VDD
				←	←	←	←	←	←	
supply Peripheral			VD1	←	←	←	←	←	←	VDD
	Port		VDD	←	←	←	←	←	←	←
	OSC		V _{D1}	←	←	Vosc	V _{D1}	←	←	←
				×	×	×	×	×	V _{D1}	VDD
	PROM		×							
SVD	PROM		16 levels	←	←	←	←	←	←	8 levels
SVD Analog comp	PROM				← ←	← ×	← ×	← ×	← 2 ch.	8 levels ×
	PROM		16 levels	←			×			
Analog comp A/D converte	PROM		16 levels 2 ch.	← ←	←	×	×	×	2 ch.	×

 $[\]bigcirc$ = Available, \times = Not available

^{*1:} The E0C88F360 operating voltage range (1.8V to 3.5V) in Low-power mode may be modified.

Notes: \bullet The pin assignment of the E0C88F360 is incompatible with the E0C883xx and E0C888xx.

[•] The table does not contain some different items. Refer to the manuals of the E0C88F360 and the E0C88xxx.

■ SUMMARY OF NOTES

Notes Related to the PROM

- (1) The PROM data bit is set to "1" at shipment. Therefore, It must be programmed before operating the IC in the normal operation mode.
- (2) The PROM data can be rewritten up to 1,000 times. (Decrement the count every time the PROM is erased and written.)
- (3) The circuit board should be designed so that the terminals can switch the input signals that differ between the PROM serial programming mode and the normal operation mode.
- (4) The terminals for the PROM programmer should be set correctly according to the operating mode and fixed so that they cannot be changed during operation. Especially the XSPRG terminal must be fixed at a Low level in the programming mode, while they must be fixed at a High level in the normal operation mode. Changing the voltage level may damage the IC.
- (5) If the operation of the E0C88F360 is unstable even though the writing and verification of the PROM data was completed normally, write and verify the PROM data without erasing the PROM.
- (6) Rewriting the PROM is done at on the user's own risk.

● Notes on Differences form the E0C883xx and E0C888xx

Be aware of the following notes when using the E0C88F360 as a development tool for the E0C883xx or E0C888xx.

Memory

The E0C88F360 contains a ROM and RAM lager than most of all E0C883xx/E0C888xx models. When developing an application, pay attention to the memory size.

Power supply

The E0C88F360 is operable with a supply voltage within the range of 1.8 V to 5.5 V. Be aware that as the supply voltage is different from the E0C883xx/E0C888xx the electrical characteristics differ. Refer to Electrical Characteristics.

Initial reset

Note that the power-on reset time differs from the E0C883xx/E0C888xx because the supply voltage is different.

Oscillation circuit

In the E0C88F360, a crystal oscillator can only be used for the OSC1 oscillation circuit and a CR or crystal/ceramic oscillator for the OSC3 oscillation circuit. Furthermore, pay attention to the difference on the oscillation start time according to the supply voltage. Be sure there is enough margin especially for stabilizing the OSC3 oscillation when controlling the peripheral circuit that uses the OSC3 clock.

LCD controller

The LCD drive voltage range of the E0C88F360 is different from that of the E0C883xx/E0C888xx. Check the electrical characteristic differences by referring to the E0C88F360 and E0C883xx/E0C888xx Technical Manuals before designing the LCD unit. Moreover, note that because mask options are fixed, the LCD drive duty of the E0C88F360 is fixed at 1/32 or 1/16 duty. The internal LCD power supply can be selected either 4.5 V or 5.5 V.

Mask option

In the E0C88F360, some mask options for the E0C883xx/E0C888xx are fixed. Therefore, some optional functions cannot be used in the E0C88F360. Check whether the functions are enabled or not in the E0C88F360 and E0C883xx/E0C888xx Technical Manuals.

A/D converter and analog comparator

Note that the A/D converter and the analog comparator cannot be used at the same time.

■ ELECTRICAL CHARACTERISTICS

Note: The electrical characteristics of the E0C88F360 are different from those of the E0C883xx/E0C888xx. The following characteristics should be used as reference values when using the E0C88F360 as a development tool.

Absolute Maximum Rating

(Vss=0V)

Item	Symbol	Condition	Value		Note
Power voltage	Vdd		-0.3 to +7.0	V	
Liquid crystal power voltage	Vc5		-0.3 to +7.0	V	
Input voltage	Vı		-0.3 to VDD + 0.3	V	
Output voltage	Vo		-0.3 to VDD + 0.3	V	
High level output current	Іон	1 terminal	-5	mA	
		Total of all terminals	-20	mA	
Low level output current	lol	1 terminal	5	mA	
		Total of all terminals	20	mA	
Permitted loss	PD		200	mW	1
Operating temperature	Topr		-20 to 70	°C	
Storage temperature	Tstg		-65 to +150	°C	2

Note) 1 In case of plastic package.

Recommended Operating Conditions

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating power voltage (Normal)	Vdd		2.4		5.5	V	
Operating power voltage (High-speed)	Vdd		3.5		5.5	V	
Operating power voltage (Low-power)	Vdd		1.8 *		3.5	٧	5
Operating frequency (Normal)	fosc1	VDD = 2.4 to 3.5V	30.000	32.768	50.000	kHz	
	fosc3		0.03		4.2	MHz	
Operating frequency (High-speed)	fosc1	VDD = 3.5 to 5.5V	30.000	32.768	50.000	kHz	
	fosc3		0.03		8.2 *	MHz	5
LCD power voltage	VC5				7.0	V	
Capacitor between VD1 and Vss	C ₁			0.1		μF	3
Capacitor between Vc1 and Vss	C ₂			0.1		μF	3
Capacitor between Vc2 and Vss	Сз			0.1		μF	3
Capacitor between Vc3 and Vss	C4			0.1		μF	3
Capacitor between Vc4 and Vss	C 5			0.1		μF	3
Capacitor between Vc5 and Vss	C ₆			0.1		μF	3
Capacitor between CA and CB	C ₇			0.1		μF	3
Capacitor between CA and CC	C8			0.1		μF	3
Capacitor between CD and CE	C ₉			0.1		μF	3
Resistor between Vc1 and Vss	R ₁			100		kΩ	4

Note) 3 No capacitor is required when the LCD power supply is not used. In this case, leave the Vc1-Vc5 and CA-CE terminals open.

DC Characteristics

(Unless otherwise specified: VDD=1.8 to 5.5V, Vss=0V, Ta=25°C)

14	0	Constitions					
Item	Symbol		Min.	Тур.	Max.	Unit	Note
High level input voltage	VIH	Kxx, Pxx, XSPRG, RXD, SCLK, CLKW,	0.8Vpd		Vdd	V	
		MCU/MPU					
Low level input voltage	VIL	Kxx, Pxx, XSPRG, RXD, SCLK, CLKW,	0		0.2Vdd	V	
		MCU/MPU					
High level schmitt input voltage	VT+	RESET	0.5Vdd		0.9Vpd	V	
Low level schmitt input voltage	VT-	RESET	0.1Vdd		0.5Vpd	V	
High level output current	Іон	Pxx, Rxx, TXD, VoH = 0.9Vdd			-0.5	mΑ	
Low level output current	lol	Pxx, Rxx, TXD, Vol = 0.1Vdd	0.5			mΑ	
Input leak current	ILI	Kxx, Pxx, XSPRG, RXD, SCLK, CLKW,	-1		1	μΑ	
		RESET, MCU/MPU					
Output leak current	ILO	Pxx, Rxx, TXD	-1		1	μΑ	
Input pull-up resistance	RIN	Kxx, Pxx, XSPRG, RXD, SCLK, CLKW,	100		500	kΩ	
		RESET, MCU/MPU					
Input terminal capacitance	CIN	Kxx, Pxx, XSPRG, RXD, SCLK, CLKW			15	pF	
Segment/Common output current	ISEGH	SEGxx, COMxx, Vsegh = Vc5-0.1V			-5	μΑ	
	ISEGL	SEGxx, COMxx, Vsegl = 0.1V	5			μΑ	

² This rated value cannot insure the PROM data holding function.

⁴ It is necessary when the panel load is large and for 1/32 duty driving.

The resistance value should be decided by connecting it to the actual panel to be used.

⁵ The value with * may change without norice. It will affect the related characteristics.

Analog Circuit Characteristics

LCD drive circuit

(Unless otherwise specified: VDD=1.8 to 5.5V, Vss=0V, Ta=25°C, C1-C9=0.1μF)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	
LCD drive voltage	VC1	#1	0.18Vc5	- , .	0.22Vc5	V	
	VC2	#2	0.39Vc5		0.43Vc5	V	
	Vсз	#3	0.59Vc5		0.63Vc5	V	
	VC4	#4	0.80Vc5		0.84Vc5	V	
	VC5	#5 LCX = 0H		3.89		V	
	TYPE A	LCX = 1H		3.96		V	
	(4.5V)	LCX = 2H	1	4.04		V	
		LCX = 3H		4.11		V	
		LCX = 4H		4.18		V	
		LCX = 5H		4.26		V	
		LCX = 6H		4.34		V	
		LCX = 7H	Typ×0.94	4.42	Typ×1.06	V	
		LCX = 8H		4.50		V	
		LCX = 9H		4.58		V	
		LCX = AH		4.66		V	
		LCX = BH		4.74		V	
		LCX = CH		4.82		V	
		LCX = DH		4.90		V	
		LCX = EH		4.99		V	
		LCX = FH		5.08		V	
	VC5	#5 LCX = 0H		4.73		V	
	TYPE B	LCX = 1H		4.83		V	
	(5.5V)	LCX = 2H		4.92		V	
		LCX = 3H		5.02		V	
		LCX = 4H		5.11		V	
		LCX = 5H		5.21		V	
		LCX = 6H		5.30		V	
		LCX = 7H	Typ×0.94	5.40	Typ×1.06	V	
		LCX = 8H		5.50		V	
		LCX = 9H		5.60		V	
		LCX = AH	-	5.70	-	V	-
		LCX = BH	-	5.81		V	-
		LCX = CH	- 1	5.93		V	
		LCX = DH	-	6.05	-	V	
		LCX = EH	-	6.17	-		
		LCX = FH		6.29		V	

^{#1} Connects 1M $\!\Omega$ load resistor between Vss and Vc1.

SVD circuit

(Unless otherwise specified: VDD=1.8 to 5.5V, Vss=0V, Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
SVD voltage	Vsvd	Level 1 → Level 0		1.82		V	6
		Level 2 → Level 1] [2.00] [V	6
		Level 3 → Level 2] [2.18] [V	6
		Level 4 → Level 3] [2.36] [V	6
		Level 5 → Level 4	Typ×0.92	.92 2.54	Typ×1.08	V	7
		Level 6 → Level 5		2.72		V	7
		Level 7 → Level 6		2.90		V	7
		Level 8 → Level 7] [3.08		V	7
		Level 9 → Level 8] [3.26] [V	7
		Level 10 → Level 9		3.45		V	7
		Level 11 → Level 10] [3.65] [V	8
		Level 12 → Level 11	T 0 00	3.85	T.m.,4 40	V	8
		Level 13 → Level 12	Typ×0.88	4.05	Typ×1.12	V	8
		Level 14 → Level 13		4.25] [V	8
		Level 15 → Level 14		4.50		V	8

 $V_{SVD \ (Level\ 0)} < V_{SVD \ (Level\ 1)} < V_{SVD \ (Level\ 2)} < V_{SVD \ (Level\ 3)} < V_{SVD \ (Level\ 4)} < V_{SVD \ (Level\ 5)} < V_{SVD \ (Level\ 6)} < V_{SVD \ (Level\ 7)} < V_{SVD \ (Level\ 8)} < V_{SVD \ (Level\ 7)} < V_{SVD \ (Level\ 8)} < V_{SVD \ (Level\ 8)}$

- 7 Low-power or normal operation mode
- 8 Normal or high-speed operating mode

^{#4} Connects 1M $\!\Omega$ load resistor between Vss and Vc4.

^{#2} Connects $1M\Omega$ load resistor between Vss and Vc2. #3 Connects $1M\Omega$ load resistor between Vss and Vc3.

^{#5} Connects 1M Ω load resistor between Vss and Vcs.

^{#3} Connects TMM2 load resistor between vss and vc3

 $< V \\ \text{SVD (Level 10)} < V \\ \text{SVD (Level 11)} < V \\ \text{SVD (Level 12)} < V \\ \text{SVD (Level 13)} < V \\ \text{SVD (Level 14)} < V \\ \text{SVD (Level 15)} < V \\ \text{SVD (Level 17)} < V$

Note) 6 Low-power operation mode

Analog comparator

(Unless otherwise specified: VDD=1.8 to 5.5V, Vss=0V, Ta=25 $^{\circ}$ C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Analog comparator	Vсмір	Non-inverted input (CMPP)	0.7		VDD - 0.7	V	9
operating voltage input range	Vсмім	Inverted input (CMPM)	0.7		VDD - 0.7	V	9
Analog comparator	Vсмоғ	VCMIP = 0.7V to VDD - 0.7V			20	mV	9
offset voltage		VCMIM = 0.7V to VDD - 0.7V					
Analog comparator stability time	t _{CMP1}				1	mS	10
Analog comparator	t _{CMP2}	VCMIP = 0.7V to VDD - 0.7V			2	mS	11
response time		VCMIM = 0.7V to VDD - 0.7V					
		$VCMIP = VCMIM \pm 0.025V$					

- Note) 9 When "no pull-up resistor" (comparator input terminal) is selected by mask option.
 - 10 Stability time is the time from turning the circuit ON until the circuit is stabilized.
 - 11 Response time is the time that the output result responds to the input signal.

A/D converter

(Unless otherwise specified: VDD=AVDD=AVREF=5.0V, VSS=AVSS=0V, fosc1=32.768kHz, fosc3=4.0MHz, Ta=25°C)

Item	Symbol	I Condition		Тур.	Max.	Unit	Note
Zero-scale error	Ezs	VDD=AVDD=AVREF=2.7 to 5.5V,	-1.50		1.50	LSB	
Full-scale error	Efs	ADCLK=2MHz, Ta=25°C	-1.50		1.50	LSB	
Non-linearity error	El		-1.50		1.50	LSB	
Total error	Et		-3.00		3.00	LSB	
A/D converter	IAD	VDD=AVDD=AVREF=3.0V, ADCLK=2MHz, Ta=25°C		0.50	1.00	mA	
current consumption		AVREF and ADCLK divider current not included					
		VDD=AVDD=AVREF=5.0V, ADCLK=2MHz, Ta=25°C		1.80	3.50	mA	
		AVREF and ADCLK divider current not included					
Input clock frequency	f	VDD=AVDD=AVREF=2.7 to 5.5V, Ta=25°C		2	4	MHz	

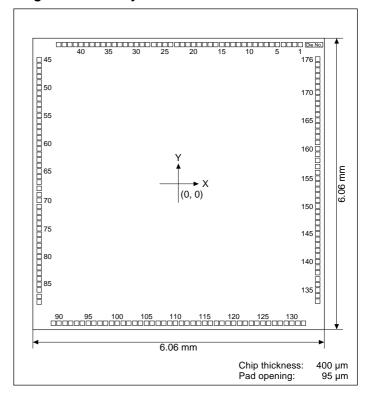
- * Zero-scale error: Ezs = deviation from the ideal value at zero point
- * Full-scale error: Efs = deviation from the ideal value at the full scale point
- * Non-linearity error: EI = deviation of the real conversion curve from the end point line
- * Total error: Et = max(Ezs, Efs, Eabs), Eabs = deviation from the ideal line (including quantization error)

Power Current Consumption (The table shows objective values, so they may be changed.)

 $(Unless \ otherwise \ specified: \ VDD=Within \ the \ operating \ voltage \ in \ each \ operating \ mode, \ Vss=0V, \ Ta=25^{\circ}C,$

OSC1=32.768kHz crystal oscillation, Cg=25pF, OSC3=External clock input, Non heavy load protection mode, C1-C9=0.1µF, No panel load)

Item	Symbol	Condition		Min.	Тур.	Max.	Unit	Note
Power current	IDD1	In SLEEP status	#1			1	μΑ	
(Normal mode)	IDD2	In HALT status		3	5	μΑ		
	IDD3	CPU is in RUN status (VDD = 5.5V, 32.768kHz)	#3		18	25	μΑ	
	IDD4	CPU is in RUN status (VDD = 5.5V, 1MHz)	#4		0.5	1	mA	
	IHVL	In heavy load protection mode				70	μΑ	12
Power current	IDD1	In SLEEP status	#1			3	μΑ	
(High-speed mode)	IDD2	In HALT status	#2			10	μΑ	
	IDD3	CPU is in RUN status (VDD = 5.5V, 32.768kHz)	#3		32	40	μΑ	
	IDD4	CPU is in RUN status (VDD = 5.5V, 1MHz)	#4		1	2	mΑ	
	IHVL	In heavy load protection mode				100	μΑ	12
Power current	IDD1	In SLEEP status	#1			1	μΑ	
(Low-power mode)	IDD2	In HALT status	#2			5	μΑ	
	IDD3	CPU is in RUN status (VDD = 3.5V, 32.768kHz)	#3		10	16	μΑ	
	IHVL	In heavy load protection mode				40	μΑ	12
LCD drive circuit current	ILCDN	VDD = 5.5V				8	μΑ	
	ILCDH	In heavy load protection mode				35	μΑ	12
SVD circuit current	Isvdn	VDD = 5.5V				180	μΑ	13
	Isvdh	In heavy load protection mode		•		240	μΑ	12
Analog comparator	ICMP1	CMPXDT="1"				100	μΑ	
circuit current	ICMP2	CMPXDT="0"				10	μА	


- #1 OSC1: Stop, OSC3: Stop, CPU, ROM, RAM: SLEEP status, Clock timer: Stop, Others: Stop status Clock timer: Runing, Others: Stop status Clock timer: Runing, Others: Stop status
- #3 OSC1: Oscillating, OSC3: Stop, CPU, ROM, RAM: Runing in 32.768kHz, Clock timer: Runing, Others: Stop status 44 OSC1: Oscillating, OSC3: Oscillating, CPU, ROM, RAM: Runing in 1MHz, Clock timer: Runing, Others: Stop status
- Note) 12 It is the value of current which flows in the heavy load protection circuit when in the heavy load protection mode (OSC3 ON or buzzer ON).
 - 13 The value when $VDD = x \ V$ can be found by the following expression: ISVDN $(VDD = x \ V) = (x \times 60) 150$ (Max. value)
 - # In the E0C88F360, CR option cannot be selected for the OSC1 oscillation circuit.

■ PACKAGE AND PAD LAYOUT

Package Dimensions

Plastic QFP18-176pin 24±0.1 ₩88 133 24±0.1 26±0.4 INDEX 0.2+0.1 0.15±0.05 0.5±0.2 1 (Unit: mm) The dimensions are subject to change without notice.

Diagram of Pad Layout

● Pin Layout (QFP18-176pin)

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
1	SEG2	37	SEG38	73 CE		109	P12/SCLK	145	R25/CL
2	SEG3	38	SEG39	74	CD	110	P11/SOUT	146	R26/FR
3	SEG4	39	SEG40	75	CC	111	P10/SIN	147	R27/TOUT
4	SEG5	40	SEG41	76	CB	112	AVDD	148	R30/CE0
5	SEG6	41	SEG42	77	_		AVss	149	R31/CE1
6	SEG7	42	SEG43	78	78 Vc5		AVREF	150	R32/CE2
7	SEG8	43	SEG44	79 Vc4 115		VDD	151	R33/CE3	
8	SEG9	44	SEG45	80	Vcз	116	P07/D7	152	R34/FOUT
9	SEG10	45	SEG46	81	VC2	117	P06/D6	153	R35
10	SEG11	46	SEG47	82	Vc1	118	P05/D5	154	R36
11	SEG12	47	SEG48	83	OSC3	119	P04/D4	155	R37
12	SEG13	48	SEG49	84	OSC4	120	P03/D3	156	Vss
13	SEG14	49	SEG50	85	V _{D1}	121	P02/D2	157	COM0
14	SEG15	50	COM31/SEG51	86	VDD	122	P01/D1	158	COM1
15	SEG16	51	COM30/SEG52	87	Vss	123	P00/D0	159	COM2
16	SEG17	52	COM29/SEG53	88	Vosc	124	R00/A0	160	COM3
17	SEG18	53	COM28/SEG54	89	OSC1	125	R01/A1	161	COM4
18	SEG19	54	COM27/SEG55	90	OSC2	126	R02/A2	162	COM5
19	SEG20	55	COM26/SEG56	91	TEST	127	R03/A3	163	COM6
20	SEG21	56	COM25/SEG57	92	RESET	128	R04/A4	164	COM7
21	SEG22	57	COM24/SEG58			129	R05/A5	165	COM8
22	SEG23	58	COM23/SEG59	94 K11/BREQ		130	R06/A6	166	COM9
23	SEG24	59	COM22/SEG60		95 K10/EVIN 1		R07/A7	167	COM10
24	SEG25	60	COM21/SEG61	96	K07	132	R10/A8	168	COM11
25	SEG26	61	COM20/SEG62	97	K06	133	R11/A9	169	COM12
26	SEG27	62	COM19/SEG63	98	K05	134	R12/A10	170	COM13
27	SEG28	63	COM18/SEG64	99	K04	135	R13/A11	171	COM14
28	SEG29	64	COM17/SEG65	100	K03	136	R14/A12	172	COM15
29	SEG30	65	COM16/SEG66	101	K02	137	R15/A13	173	R50/BZ
30	SEG31	66	V _{D1} F	102	K01	138	R16/A14	174	R51/BACK
31	SEG32	67	XSPRG	103	K00	139	R17/A15	175	SEG0
32	SEG33	68	CLKW	104	P17/CMPM1	140	R20/A16	176	SEG1
33	SEG34	69	VEPEXT	105 P16/CMPP1 141 R21/A17			-	_	
34	SEG35	70	RXD	106	P15/CMPM0	142	R22/A18	-	_
35	SEG36	71	SCLK	107	P14/CMPP0	143	R23/RD	-	_
36	SEG37	72	TXD	108	P13/SRDY	144	R24/WR	_	_

Pad Coordinates

(Unit: µm)

							Р				Ullit. µIII)
	Pad		dinate		Pad		dinate		Pad		dinate
No.	Name	Х	Х	No.	Name	Х	Х	No.	Name	Х	Х
1	OSC1	2,533	2,896	60	R30/CE0	-2,896	846	119	SEG32	1,032	-2,896
2	OSC2	2,417	2,896	61	R31/CE1	-2,896	730	120	SEG33	1,147	-2,896
3	TEST	2,302	2,896	62	R32/CE2	-2,896	615	121	SEG34	1,274	-2,896
4	RESET	2,186	2,896	63	R33/CE3	-2,896	499	122	SEG35	1,389	-2,896
5	MCU/MPU	2,059	2,896	64	R34/FOUT	-2,896	384	123	SEG36	1,516	-2,896
6	K11/BREQ	1,943	2,896	65	R35	-2,896	268	124	SEG37	1,631	-2,896
7	K10/EVIN	1,828	2,896	66	R36	-2,896	153	125	SEG38	1,758	-2,896
8	K07	1,712	2,896	67	R37	-2,896	37	126	SEG39	1,874	-2,896
9	K06	1,597	2,896	68	Vss	-2,896	-93	127	SEG40	2,000	-2,896
10	K05	1,481	2,896	69	R50/BZ	-2,896	-224	128	SEG41	2,116	-2,896
11	K04	1,366	2,896	70	R51/BACK	-2,896	-340	129	SEG42	2,242	-2,896
	K03	.	· ·								
12		1,250	2,896	71	COM0	-2,896	-470	130	SEG43	2,358	-2,896
13	K02	1,135	2,896	72	COM1	-2,896	-586	131	SEG44	2,484	-2,896
14	K01	1,019	2,896	73	COM2	-2,896	-701	132	SEG45	2,600	-2,896
15	K00	904	2,896	74	COM3	-2,896	-817	133	SEG46	2,896	-2,456
16	P17/CMPM1	776	2,896	75	COM4	-2,896	-932	134	SEG47	2,896	-2,341
17	P16/CMPP1	661	2,896	76	COM5	-2,896	-1,048	135	SEG48	2,896	-2,214
18	P15/CMPM0	545	2,896	77	COM6	-2,896	-1,163	136	SEG49	2,896	-2,099
19	P14/CMPP0	430	2,896	78	COM7	-2,896	-1,279	137	SEG50	2,896	-1,976
20	P13/SRDY	314	2,896	79	COM8	-2,896	-1,394	138	COM31/SEG51	2,896	-1,845
21	P12/SCLK	199	2,896	80	COM9	-2,896	-1,510	139	COM30/SEG52	2,896	-1,730
22	P11/SOUT	83	2,896	81	COM10	-2,896	-1,625	140	COM29/SEG53	2,896	-1,614
23	P10/SIN	-32	2,896	82	COM11	-2,896	-1,741	141	COM28/SEG54	2,896	-1,499
24	AVDD	-163	2,896	83	COM12	-2,896	-1,856	142	COM27/SEG55	2,896	-1,383
25	AVss	-279	2,896	84	COM12	-2,896	-1,972	143	COM26/SEG56	2,896	-1,268
		-	· ·								
26	AVREF	-394	2,896	85	COM14	-2,896	-2,087	144	COM25/SEG57	2,896	-1,152
27	VDD	-510	2,896	86	COM15	-2,896	-2,203	145	COM24/SEG58	2,896	-1,037
28	P07/D7	-641	2,896	87	SEG0	-2,896	-2,339	146	COM23/SEG59	2,896	-921
29	P06/D6	-756	2,896	88	SEG1	-2,896	-2,455	147	COM22/SEG60	2,896	-806
30	P05/D5	-872	2,896	89	SEG2	-2,600	-2,896	148	COM21/SEG61	2,896	-690
31	P04/D4	-987	2,896	90	SEG3	-2,484	-2,896	149	COM20/SEG62	2,896	-575
32	P03/D3	-1,103	2,896	91	SEG4	-2,358	-2,896	150	COM19/SEG63	2,896	-459
33	P02/D2	-1,218	2,896	92	SEG5	-2,242	-2,896	151	COM18/SEG64	2,896	-344
34	P01/D1	-1,334	2,896	93	SEG6	-2,116	-2,896	152	COM17/SEG65	2,896	-228
35	P00/D0	-1,449	2,896	94	SEG7	-2,000	-2,896	153	COM16/SEG66	2,896	-113
36	R00/A0	-1,565	2,896	95	SEG8	-1,874	-2,896	154	V _{D1} F	2,896	3
37	R01/A1	-1,680	2,896	96	SEG9	-1,758	-2,896	155	XSPRG	2,896	118
38	R02/A2	-1,796	2,896	97	SEG10	-1,631	-2,896	156	CLKW	2,896	234
39	R03/A3	-1,911	2,896	98	SEG11	-1,516	-2,896	157	VEPEXT	2,896	361
40	R04/A4	-2,027	2,896	99	SEG12	-1,389	-2,896	158	RXD	2,896	489
41			+								
	R05/A5	-2,142	2,896	100	SEG13	-1,274	-2,896	159	SCLK	2,896	616
42	R06/A6	-2,258	2,896	101	SEG14	-1,147	-2,896	160	TXD	2,896	732
43	R07/A7	-2,373	2,896	102	SEG15	-1,032	-2,896	161	CE	2,896	862
44	R10/A8	-2,489	2,896	103	SEG16	-905	-2,896	162	CD	2,896	978
45	R11/A9	-2,896	2,578	104	SEG17	-790	-2,896	163	CC	2,896	1,093
46	R12/A10	-2,896	2,463	105	SEG18	-663	-2,896	164	СВ	2,896	1,209
47	R13/A11	-2,896	2,347	106	SEG19	-548	-2,896	165	CA	2,896	1,324
48	R14/A12	-2,896	2,232	107	SEG20	-421	-2,896	166	VC5	2,896	1,440
49	R15/A13	-2,896	2,116	108	SEG21	-305	-2,896	167	VC4	2,896	1,555
50	R16/A14	-2,896	2,001	109	SEG22	-179	-2,896	168	Vcз	2,896	1,671
51	R17/A15	-2,896	1,885	110	SEG23	-63	-2,896	169	VC2	2,896	1,786
52	R20/A16	-2,896	1,770	111	SEG24	63	-2,896	170	Vc1	2,896	1,902
53	R21/A17	-2,896	1,654	112	SEG25	179	-2,896	171	OSC3	2,896	2,017
54	R22/A18	-2,896	1,539	113	SEG26	305	-2,896	172	OSC4	2,896	2,133
55	R23/RD	-2,896	1,423	114	SEG27	421	-2,896	173	V _{D1}	2,896	2,133
-	R24/WR	<u> </u>					-				
56		-2,896	1,308	115	SEG28	548	-2,896	174	VDD	2,896	2,364
57	R25/CL	-2,896	1,192	116	SEG29	663	-2,896	175	Vss	2,896	2,479
58	R26/FR	-2,896	1,077	117	SEG30	790	-2,896	176	Vosc	2,896	2,595
59	R27/TOUT	-2,896	961	118	SEG31	905	-2,896	-			

■ PIN DESCRIPTION

Pin name	Pin No.	Pad No.	In/Out	Function
VDD	86, 115	27, 174	- III/Out	Power supply (+) terminal
Vss	87, 156	68, 175	_	Power supply (GND) terminal
VD1	85	173	_	Internal logic system voltage regulator output terminal
V _{D1} F	66	154	_	Internal logic/Flash block voltage regulator output terminal (Normal: VD1F=VD1)
Vosc	88	176	_	Oscillation voltage regulator output terminal
VC1-VC5	82–78	170–166	0	LCD drive voltage output terminals
CA-CE	77–73	165–161	_	Booster capacitor connection terminals for LCD
OSC1	89	1	1	OSC1 crystal oscillation input terminal
OSC2	90	2	0	OSC1 crystal oscillation output terminal
OSC3	83	171		OSC3 ceramic or CR oscillation input terminal
OSC4	84	171	0	OSC3 ceramic or CR oscillation input terminal OSC3 ceramic or CR oscillation output terminal
MCU/MPU	93	5	Ĭ	
				Terminal for setting MCU or MPU modes
K00-K07	103–96	15–8	l i	Input terminals (K00–K07)
K10/EVIN	95	7	!	Input terminal (K10) or event counter external clock input terminal (EVIN)
K11/BREQ	94	6	I	Input terminal (K11) or bus request signal input terminal (BREQ)
R00-R07/A0-A7	124–131	36–43	0	Output terminals (R00–R07) or address bus (A0–A7)
R10-R17/A8-A15	132–139	44–51	0	Output terminals (R10–R17) or address bus (A8–A15)
R20-R22/A16-A18	140–142	52–54	0	Output terminals (R20–R22) or address bus (A16–A18)
R23/RD	143	55	0	Output terminal (R23) or read signal output terminal (RD)
R24/WR	144	56	0	Output terminal (R24) or write signal output terminal (WR)
R25/CL	145	57	0	Output terminal (R25) or LCD synchronous signal output terminal (CL)
R26/FR/TOUT*	146	58	0	Output terminal (R26) or LCD frame signal (FR) output terminal
			_	* TOUT output is available for using as the E0C888xx.
R27/TOUT	147	59	0	Output terminal (R27)
				or programmable timer underflow signal output terminal (TOUT)
R30-R33/CE0-CE3	148–151	60–63	0	Output terminals (R30–R33) or chip enable output terminals ($\overline{CE0}$ – $\overline{CE3}$)
R34/FOUT	152	64	0	Output terminal (R34) or clock output terminal (FOUT)
R35-R37	153–155	65–67	0	Output terminals (R35–R37)
R50/BZ	157	69	0	Output terminal (R50) or buzzer output terminal (BZ)
R51/BACK/BZ*	158	70	0	Output terminal (R51) or bus acknowledge signal output terminal (BACK)
				* BZ output is available for using as the E0C888xx.
P00-P07/D0-D7	123–116	35–28	I/O	I/O terminals (P00–P07) or data bus (D0–D7)
P10/SIN	111	23	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)
P11/SOUT	110	22	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)
P12/SCLK	109	21	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)
P13/SRDY	108	20	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)
P14/CMPP0	107	19	I/O	I/O terminal (P14) ,comparator 0 non-inverted input terminal
				or A/D converter input terminal
P15/CMPM0	106	18	I/O	I/O terminal (P15) ,comparator 0 inverted input terminal
				or A/D converter input terminal
P16/CMPP1	105	17	I/O	I/O terminal (P16) ,comparator 1 non-inverted input terminal
				or A/D converter input terminal
P17/CMPM1	104	16	I/O	I/O terminal (P17) ,comparator 1 inverted input terminal
				or A/D converter input terminal
COM0-COM15	159–174	71–86	0	LCD common output terminals
COM16-COM31	65–50	153-138	0	LCD common output terminals (when 1/32 duty is selected)
/SEG66-SEG51				or LCD segment output terminal (when 1/16 duty is selected)
SEG0-SEG50	175–176, 1–49	87–137	0	LCD segment output terminals
RESET	92	4	ı	Initial reset input terminal
TEST	91	3	ı	Test input terminal
AVDD	112	24	_	Analog circuit system power supply (+) terminal
AVss	113	25	_	Analog circuit system power supply (–) terminal
AVREF	114	26	_	Analog circuit system reference voltage terminal
TXD	72	160	0	Serial data output terminal for Flash programming
RXD	70	158	Ī	Serial data input terminal for Flash programming
SCLK	71	159	I/O	Serial clock I/O terminal for Flash programming
CLKW	68	156		Clock input terminal for Flash programming
XSPRG	67	155	i	Test input terminal for Flash programming
VEPEXT	69	157	_	Flash test terminal (High voltage circuit monitor terminal)
		107		a.c. toot torrinia: (riigh Yorago onoun mornor torrinia)

Notes: • The pin assignment of the E0C88F360 (QFP18-176pin) is incompatible with the E0C883xx/E0C888xx.

- "*" indicates that the pin function of the E0C888xx differs from that of the E0C883xx.
- The Flash memory in the E0C88F360 can be programmed with a single power source (4.5 V to 5 V).

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

© Seiko Epson Corporation 2000 All right reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

IC Marketing & Engineering Group

ED International Marketing Department I (Europe & U.S.A.)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: 042-587-5812 FAX: 042-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: 042-587-5814 FAX: 042-587-5110

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/

